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Abstract 
 
Due to chaos small causes may evolve in time and have tremendous effects. It leads to very important effects in science 
and engineering. But does it have implications for management and business? This article discusses possible causes of 
chaos from a managerial perspective. In science there are some rules how and when chaos is easy to describe. The 
present paper shows their implications for business situations. It explains how to recognize chaos in business situations.  
It gives advice how to deal with chaotic systems. It concludes that considering chaos is indispensable for managers and 
consultants. 
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1. Introduction 
 
Almost everybody might have some understanding of 
the word chaos. At least in the sense as an ordinary 
dictionary defines it (e.g. as great disorder or 
confusion). There is also a more elaborate definition of 
chaos in science and mathematics. About 25 years ago 
avalanches of publications dealing with chaos have 
come into motion. Unlike in many other such cases, 
they have left traces in "daily life". Recently [1], chaos 
was used to show that Taylor's management theory [2] 
can't be correct. The present article will not deal with 
possible shortcomings of Taylor's theory [2], [3]. It will 
give hints where scientific considerations of chaos will 
become important for business and management. Quite 
often it is argued that in the microscopic world of 
quantum mechanics the uncertain principle makes the 
world non-deterministic. And due to chaos similar 
things do appear in the macroscopic world of daily life. 
Beside the fact that both statements are wrong they are 
not helpful. 
 
Therefore I will explain as briefly as possible what 
chaos means in science. From that I will show that 
chaos has to do with many things in daily life and 

especially business. Then I will go back to science and 
explain why one can sometimes deal with chaos 
perfectly well and partly not at all. After that, 
conclusions for daily life will become almost trivial. 
 
 
2. What is chaos? 
 
The word has its root in the Greek word Χαοσ. Its 
original meaning was something like "empty space, 
void". Later, the Roman influence changed its meaning 
to "disordered mass". The latter meaning can still be 
found in the e.g. Christian mythology where in the book 
of Genesis it is written that God created heaven and 
earth from chaos. Our word "gas" has its origin in the 
word Χαοσ, too. Historically, gas was very hard to 
describe because it moves around "chaotically". Indeed 
the roughly 300,000,000,000,000,000,000 molecules in 
a cubic centimeter of air move around very chaotically 
(in the sense of modern science). Their global behavior 
is nevertheless easy to describe in most situations (It is 
an example where chaos is easy to handle. But this will 
become much clearer further below.). 
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A precise definition of chaos may run as follows. Given 
is a set of things (e.g. particles, stocks) and their state 
(e.g. position, velocity, value, yield) at an initial time. 
Because our world is deterministic [4], their state (e.g. 
position, velocity, value, yield) can be determined for a 
later time. Of course, the process of doing it can be 
extremely tedious. For the above mentioned cubic 
centimeter of air even the biggest computer in the world 
cannot determine all paths of all the molecules, though 
the algorithm is trivial. To do it in principle one has to 
know the initial state (Nobody can calculate how long a 
stone will fall if dropped in a well, if it is not known 
how deep the well is.). Needless to say, if the initial 
states will vary so will the final one. Sometimes the 
difference in initial states will grow exponentially [5] in 
time (or faster). I.e. even the smallest initial difference 
will become big after a long enough period of time. 
Exactly this is called chaotic behavior or in short chaos. 
 
There are various indicators and definitions for chaos. 
For a scientist it is important to prove which are 
identical and which exclusive. The details may be found 
in a standard text book, e.g. [6]. I will give some less 
precise but easy to understand examples from daily life. 
 
First consider two cars driving on a fixed route through 
a big city (e.g. a loop of 50 miles in length). Let them 
both start at the same time but 1 mile apart. If neither of 
them is speeding their distance will remain roughly 1 
mile. Their exact positions are difficult to determine 
due to traffic lights, etc. (Note that in principle 
everything is strictly deterministic.) This first example 
does not show chaotic behavior, if one takes the 
(average) distance between the cars as output variable. 
 
In the second case I will assume the same initial state 
(two cars in a big city, 1 mile apart). But now the 
drivers are not supposed to drive on a fixed route. At 
every intersection they decide where to drive by the rule 
to minimize their stopping time (In the case of several 
choices they may have a rule like first straight, then 
right, and least preferred left). At least if you perform 
this experiment in Los Angeles on a Friday afternoon, 
the distance of the cars will grow rapidly. It is a typical 
example for chaotic behavior. But there are a few 
important remarks. As in the first example the position 
of each car (and their distance) is strictly deterministic. 
The chaotic behavior will also occur if the initial 
distance is much smaller than 1 mile (Even if they start 
bumper to bumper.). Their initial distance will change 
the "onset point" of chaos. Here it is the first 
intersection where they take different routes. 
 
There is an immediate learning from the two examples. 
In both cases there are simple and clear-cut rules to 
predict the future. However, only the first set of rules is 
useful to predict the future in the real world. You may 
perform the first experiment on different days in 
different cities, but its outcome will roughly be the 
same. I can predict from theory (i.e. the rules) that their 
distance will remain roughly 1 mile. In the second case 
I see no way to estimate the distance of the cars after 

say 3 hours. Even if you tell me that they will both start 
on a particular day at 12 p.m. on Western corner to 
Hollywood and Western corner to Melrose (heading 
south) in Los Angeles, respectively. With the help of 
traffic forecast and the exact switching times of traffic 
lights one may write a complicated computer program 
to simulate the situation. Nevertheless, the outcome will 
be pretty disappointing (one pedestrian crossing the 
street 3 seconds later can change the entire picture!). 
 
In business and management one often has models to 
predict cost or time. They are not fundamentally 
different from my two examples. A computer program 
for e.g. optimizing warehousing may be based on a set 
of rigorous and logic rules. Given the same input the 
computer will also give the same output each time. But 
this is also true for the computer program simulating 
example 2 as mentioned above. Nevertheless, its output 
will have nothing to do with reality. Whether the 
computer program is in itself chaotic (and therefore 
useless) can be checked. E.g. by varying the input 
variables and intrinsic parameters randomly by a 
reasonable amount of uncertainty. This will yield the 
amount of uncertainty in the result, which should stay 
reasonably small. But even if the program is sufficiently 
robust, the reality maybe chaotic. I.e. the computer 
program is useless because it does not describe what it 
should. And if it would, it would be impractical. 
 
Before I will give some guidelines how to handle such 
cases, I will give some hints when one should watch out 
for chaos. 
 
 
3. How to smell chaos without being burned 
by it? 
 
Which system will show chaos and which won't is one 
central question in most scientific work about chaos. 
(The second question is how to describe it, if it is 
chaotic. It will be the central question of my next 
section.) Unfortunately, a global answer to the question 
has not been found yet. In science and math systems are 
normally defined by a set of equations. If all equations 
are entirely linear, chaos won't appear. This is obvious, 
because in a linear world everything is proportional to 
everything. I.e. a doubling of something will double 
other things but not quadruple. Therefore the above 
mentioned exponential growth [5] can't be observed. 
However, linearity is in most cases only an 
approximation to the real world. From this I have the 
bad news that chaos might lurk everywhere. The good 
news is that it will disappear, if nonlinearities are small 
enough. I.e. one can give (for certain classes of 
equations) exact proofs, whether their nonlinearity is 
big enough to cause chaos. For two reasons this is not 
too helpful for the present purpose. Firstly, the proofs 
are different for each class of equations and, 
evidentially, the infinite number of classes of equations 
couldn't have been considered. Secondly, in 
management we often have rules how systems will 
evolve. Though they can be as rigorous as equations 



(cf. examples 1 and 2 above), their translation into math 
is not always possible. 
 
I will close this section with some rules of thumb. For 
pure statistical reason chaos becomes more and more 
likely with growing complexity of the system. Likely 
sources for chaotic behavior are "if...then..." decisions. 
In my above mentioned second example they are given 
by e.g. "if there is only a green arrow to the left, then 
turn left". But also implicitly in the first example by e.g. 
"if the car arrives between 2.15 p.m. and 2.17 p.m. at a 
certain intersection, then it must stop for some time". 
If...then... decisions are mathematically equivalent to 
discontinuous functions. A discontinuity is of course a 
non-linearity. How strong this non-linearity is depends 
heavily on the difference of the two choices within an 
if...then... decision. In my first example the maximum 
effect was a delay of a few minutes, and there is a good 
chance of averaging out. In the second example its 
effect will be a different direction (in addition to the 
delay). And there is no realistic chance that it will be 
averaged out. 
 
After having given a few guidelines how to detect 
chaos, I will now deal with the maybe most important 
question. 
 
 
4. How to handle chaotic systems? 
 
The best advice is to stay out of them. Of course, that is 
not always possible. The second best advice is not to 
"fight" the almighty enemy. Though it sounds 
ridiculous, I've seen many people trying to calculate 
solutions for chaotic problems by using bigger and 
bigger computers. 
 
As you might guess already, this section will not end 
with a standard recipe to handle chaos. However, I will 
shed some light on the different approaches. In order to 
gain some inside, I have to go back to science. Consider 
e.g. a simple substance like water. It consists of many 
molecules and they move around very chaotically. 
Though the rules of interactions between the molecules 
are well-known and quite simple, no super-computer 
can handle a gallon of water. (Besides being chaotic, it 
is also the large number of molecules which makes it 
difficult.) On the other hand, the flow of water is very 
well understood. As an example I suggest a tube filled 
with water. When a pressure difference is applied to the 
ends, the water starts to flow. Doubling the pressure 
difference will double the flow. Or less trivial, doubling 
the diameter will increase the flow 16 times. In 
predicting the mass flow of water in this experiment, I 
am predicting an averaged quantity (in contrast to the 
motions of particular molecules). Of course, nobody is 
interested which path molecule # 5648 will take. How 
many gallons per second are flowing out of the tube is 
of much more importance. The above mentioned 
process of "averaging" is also known under the name 
hydrodynamics [7]. It is basically understood. (Note 
that one needs not to have any understanding of the 

interactions of the molecules to determine the 
hydrodynamic behavior of water!) It sounds like very 
good news for stockbrokers. The daily variation of a 
particular stock lok pretty chaotic. However, by 
applying hydrodynamics [7] one should be able to 
predict the average value of the Dow Jones Index for 
each week of the following year. Because I am telling it 
so candidly, you will guess already that I used faulty 
logic somewhere. To show the point I will go back to 
my experiment of water flowing through a tube. I was 
too bold when I told you that I can predict the outcome 
of the experiment. I can if the pressure difference is not 
too big. However, reaching a certain pressure difference 
or more precisely a threshold flow velocity, the smooth 
flow pattern will change in a chaotic one. Historically, 
this form of chaos is called turbulence. To understand 
turbulence would be a big success in science and 
engineering. It is a good suggestion to apply the 
hydrodynamic procedure to the turbulent flow of water. 
There is little interest in the detailed flow pattern. The 
average amount of water coming out of the tube is for 
sure more important. Why don't we apply the 
hydrodynamic procedure for turbulent flows? - How 
would the result look like? Exactly those questions I 
had been asked some years ago by a then colleague at 
the California Institute of Technology. I will spare you 
with the details of the answers. I will give you three 
major necessities to work out a hydrodynamics for an 
underlying chaotic system (i.e. to predict averaged 
quantities). But I will not give you the reason for the 
three necessities, because it would go beyond the scope 
of the present paper (Part of it can be found in ref. [7].). 
From this it will become obvious, why the above 
mentioned approach to the stock market won't work. 
 
First one needs a complete set of macroscopic variables 
to describe the system. Macroscopic means that they are 
observable (measurable) on a macroscopic scale. In the 
case of water that may be the flow velocity rather than 
the velocity of a single molecule. Complete means that 
the set of macroscopic variables give an unambiguous 
description of the system. For water only 5 variables are 
necessary (Two glasses of water showing the same 
value in the 5 variables are indistinguishable.). That one 
needs macroscopic variables for a macroscopic 
description seems to be trivial. Though finding the 
particular ones is far from being straightforward. For a 
hydrodynamics of turbulent water I would use the same 
5 variables as mentioned above (though I am not 100 % 
sure about it). For the stock market I would suggest 
value and yield as variables. However, quantities like 
market to book ratio, etc. are also likely. I can't give the 
final answer yet. Though I think finding the right 
variables does not make the stock market problem 
insolvable. 
 
The second necessity is a difference in scales. (It will 
lead to the range of validity of our hydrodynamics.) For 
simplicity consider the time scale. In the case of water 
the molecules move back and forth in a time of roughly 
a trillionth of a second. Therefore one can only predict 
the macroscopic flow in intervals of say a billionth of a 



second. This is still pretty small and no real restriction. 
In the case of turbulence particular water droplets may 
swing back and forth on a time scale of seconds or less. 
Therefore a macroscopic description will give at best an 
average over many seconds. It is already a much severer 
restriction, though it would be still worth a try. The 
value of a particular stock will adjust say every hour. A 
macroscopic approach would yield an average over 
many hours or at least a week. But this would be still a 
very desirable result. 
 
The third and last necessity deals with the direction of 
interaction between the worlds of different (time) 
scales. I.e. stirring a cup of water may directly influence 
the motion of a particular molecule but not vice versa. 
There is no physical law why all the crazy motions of 
particular water molecules shouldn't add up to a 
spontaneous macroscopic flow. But one can calculate 
that it is very unlikely (So unlikely that the age of the 
universe is a far too short period of time to see it once.). 
It is the reason why one can tell whether a movie 
showing flowing water is running backward. In the case 
of turbulence the interaction is almost symmetric. 
Imagine a macroscopic flow and an underlying 
turbulence. There will be times when the flow is 
changing the turbulence but also vice versa. From this 
nobody could judge whether the movie is running 
backward. That's the reason why there is no simple 
macroscopic description of turbulence. Unfortunately 
the same does apply for the stock market. A massive 
fall in the Dow Jones may be due to the summing up of 
little wiggles in individual stocks. It is rarely due to e.g. 
takeovers of companies. In other words, little 
fluctuations (or wiggles) can be the (only) cause for 
macroscopic changes. In other words, nobody can tell 
whether a movie is running backward, if it only shows 
the value of the Dow Jones Index. 
 
So far for the three necessities of a macroscopic 
(hydrodynamic) description of chaotic systems. If they 
are all fulfilled, a hydrodynamic description is possible. 
In such cases I would call the chaotic system easy to 
handle as I mentioned in the introduction. In the rest of 
the paper I will comment on other attempts to deal with 
chaos. They are indispensable, if the hydrodynamic 
approach fails. Unfortunately, they are still in their 
infancies. 
 
To describe and predict the directly observable 
quantities in chaotic systems seems to be hopeless (e.g. 
the position of the cars in my second example). Maybe 
the obvious variables aren't reasonable ones. The 
Theory of Relativity or Quantum Mechanics gave rise 
to many mystic stories. But they are completely 
resolved, if one departs from thinking in variables such 
as three dimensional coordinates, or positions and 
velocities of particles. In the case of chaotic systems 
one has things (particles, cars, stocks) which change 
their position, value, etc. in time. Instead of looking for 
e.g. a value as a function of time one may consider the 
different rates or frequencies of change. The set of 
frequencies can be displayed as a function, too. The 

latter function is called the "Fourier transformed" (FT) 
of the original one. There is an easy way to handle back 
and forth calculation between FT and the original 
function. Maybe the chaotically varying value of stocks 
looks very nice if FT. Unfortunately it appears to be 
even more chaotic. However, if one compares different 
chaotic systems in an FT world, they show some 
similarities. Up to now they are not too well understood 
and almost no conclusion could be drawn. Nevertheless, 
further research appears to be very promising. 
 
In business and management chaotic systems (e.g. stock 
market) are compared with nature's chaotic systems [7]. 
Of course, biology gives rise to much more chaotic 
systems than the simple world of physics. Such 
mapping is essentially correct, but not of too much use. 
It may be good for simulation purposes. E.g. one may 
use a chaotic system known from science to create a 
computer program simulating different stock markets. It 
can be used by stockbrokers like flight simulators by 
pilots. In doing so one can gain some "feeling", which 
is often more useful than understanding. But it is 
neither an understanding nor a prediction. One does not 
explain system A by comparing it to system B, which 
isn't understood either. Neither can one predict the 
future of A by saying it will behave like B, if one does 
not know anything about the latter one. 
 
 
5. Conclusions and summary 
 
I've shown that due to chaos little changes may evolve 
in time and have big effects. And that may happen in 
daily life (example of cars) as well as in science. There 
is no standard approach to deal with chaos. For sure a 
super-computer is not much of a help. To consider 
averaged quantities is much more promising. However, 
a standard hydrodynamic approach is not always 
possible (due to the three necessities). Needless to say 
one should apply hydrodynamics whenever possible. A 
"generalized hydrodynamics" would be very desirable. 
Though it appears to be a tough problem to tackle. 
 
Nowadays management decisions and consultants' 
advice are based more and more on calculations (e.g. 
computer programs for optimizing warehousing, 
activity based costing, complex project plans [8], etc.). 
The advantage is that they yield a clear-cut answer. 
That maybe the psychological reason why most people 
take the result for granted. The existence of chaos 
should provoke afterthoughts. One should never base 
any important decision only on the result of a 
calculation. Even when I worked as a scientist (in 
theoretical physics), I performed calculations only to 
get a first impression or to support my explanation. 
Understanding came always from an array of logic 
arguments and an intense "feeling" that it is right. Or in 
the words of the late physic's Nobel laureate Richard 
Feynman: "To understand something means to be able 
to explain it to college freshmen." 
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